Update home authored by peguerin's avatar peguerin
......@@ -48,34 +48,38 @@ conda activate snakemake_rapidrun
You are ready to run the analysis !
## Download data
The complete data set can be downloaded and stored into [resources/tutorial](https://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapidrun_obitools/-/tree/master/resources/tutorial) folder with the following command:
## Download example data
```
wget -c https://gitlab.mbb.univ-montp2.fr/edna/tutorial_metabarcoding_data/-/raw/master/tutorial_rapidrun_data.tar.gz -O - | tar -xz -C ./resources/tutorial/
curl -JLO http://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapidrun_data_test/-/raw/master/test_rapidrun_data.tar.gz; tar zfxz test_rapidrun_data.tar.gz -C resources/test/
```
* Data is downloaded at [resources/tutorial](https://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapidrun_swarm/-/tree/master/resources/tutorial)
* This is a tiny subset of a real metabarcoding analysis in rapidrun format
* Data is downloaded at [resources/test/test_rapidrun_data](https://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapidrun_swarm/-/tree/master/resources/tutorial)
* this folder contains a reference database for 4 markers (Teleo01; Mamm01; Vert01; Chond01), NGS metabarcoding raw data, required metadata to handle demultiplexing on RAPIDRUN format
# Run the workflow
## Run the workflow
Simply type the following command to process data (estimated time: 25 minutes)
Simply type the following command to process example data
```
bash main.sh config/config_tutorial.yaml 8
snakemake --configfile config/config_test_rapidrun.yaml --cores 4 --use-conda
```
* The first argument `--configfile` [config/config_test_rapidrun.yaml](https://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapidrun_swarm/-/blob/master/config/config_test_rapidrun.yaml) contains parameters to apply
* The second argument `--cores` **4** is the number of CPU cores you want to allow the system uses to run the whole workflow
* The third argument `--use-conda` is only necessary if you installed the program and its dependencies using conda
______________________________________________________
* This will generate OTU occ:urences tables into [results/06_assignment/04_table](https://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapidrun_swarm/-/tree/master/results/06_assignment/04_table)
* The first argument [config/config_tutorial.yaml](https://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapidrun_swarm/-/blob/master/config/config_tutorial.yaml) contains mandatory parameters information
* The second argument **8** is the number of CPU cores you want to allow the system uses to run the whole workflow
# To go further
Please check the [wiki](https://gitlab.mbb.univ-montp2.fr/edna/snakemake_rapidrun_swarm/-/wikis/home).
# Cluster MBB
......
......